
The importance of precise tokenizing for deep grammars

Martin Forst∗, Ronald M. Kaplan∗∗

∗IMS, University of Stuttgart
Azenbergstr. 12

70174 Stuttgart, Germany
forst@ims.uni-stuttgart.de
∗∗NLTT/ISL, Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304, USA
kaplan@parc.com

Abstract
We present a non-deterministic finite-state transducer that acts as a tokenizer and normalizer for free text that is input to a broad-coverage
LFG of German. We compare the basic tokenizer used in an earlier version of the grammar and the more sophisticated tokenizer that we
now use. The revised tokenizer increases the coverage of the grammar in terms of full parses from 68.3% to 73.4% on sentences 8,001
through 10,000 of the TiGer Corpus.

1. Introduction
The work described in this paper was carried out in the
DFG1-funded DLFG2 project. Part of this project is to
scale to newspaper corpora the German broad-coverage
LFG developed in the ParGram parallel grammar develop-
ment effort. This grammar used to be developed mostly
in a phenomena-driven manner. As a consequence, gram-
mar writers paid a lot of attention to interesting syntactic
phenomena of German, but not so much to questions of
low-level processing. In the following, we will show that
high-quality low-level processing and, in particular, precise
tokenization are crucial for scaling a hand-written grammar
to free text.
The remainder of this paper is organized as follows: Sec-
tion 2. presents the setup in which the tokenizer is used.
Section 3. presents a selection of types of strings that used
to be tokenized erroneously, which lead to parsing failure.
Section 4. gives some evaluation figuresr. In section 5., we
conclude.

2. Setup in which tokenizer is used
The tokenizer is used as part of a finite-state transducer
(FST) cascade that preprocesses the input sentences before
they are parsed by a large-scale LFG of German and the
LFG parsing platform XLE. The setup is very similar to
the one described in Kaplan et al. (2004), i.e. the input is
tokenized and normalized, string-based multi-word identi-
fication is performed, morphological analysis is carried out,
a guesser proposes analyses for otherwise unknown words
and lexically based multi-word identification is performed.
All steps are non-deterministic, since the goal is to allow all
possible tokenizations (and morphological analyses etc.) as
candidates for syntactic analysis, while sticking to the rea-
sonable ones given the information available at the charac-

1Deutsche Forschungsgemeinschaft—‘German Research
Council’

2Disambiguierung einer Lexikalisch-Funktionalen Grammatik
für das Deutsche—‘Disambiguation of a Lexical Functional
Grammar for German’, grant Ro 245/18-1

ter level, in order not to blow up the downstream process-
ing.
The grammar which is used for parsing this preprocessed
input is a hand-written LFG. The grammar version we used
for the evaluation presented at the end of this paper pro-
duces a full parse for 68.3% of sentences 8,001 through
10,000 of the TiGer Corpus when the original tokenizer is
used. Thanks to a fallback mechanism, it produces partial
(or fragment) parses for the remaining sentences, so that an
overall coverage of 100% is achieved. In terms of quality
(measured as the F-score on dependency triples, cf. Rohrer
and Forst (2006)), full parses are, however, clearly superior
to partial parses. It is thus desirable to produce full parses
for as many sentences as possible.

3. Revising the tokenizer
The need to revise the tokenizer used as part of the gram-
mar’s FST cascade arose when we tried to enhance cov-
erage (and parse quality). of the German ParGram LFG.
When parsing the TiGer Corpus for the first time (instead
of much smaller corpora or linguistic examples), we no-
ticed that a considerable number of sentences could not be
analyzed due to inappropriate tokenization.

3.1. Non-trivial tokenization issues not handled by
the original tokenizer

The original tokenizer performed a very basic segmentation
of the input sentences into tokens. For instance, all periods,
except the ones at the end of a short list of common ab-
breviations and decimal/numerical points, were treated as
separate tokens, which is clearly not intended in strings like
the following (Instead of a translation, we indicate the in-
tended tokenization in the third line of each example, where
TB stands for ‘token boundary’.):

(1) eine
a
eine TB

“K.o.-Tropfen-Bande”
“k.o. drops gang”
“ TB K.o.-Tropfen-Bande TB ”

(2) in
in
in TB

der
the
der TB

Dominikus-Zimmermann-Str.
Dominikus Zimmermann street
Dominikus-Zimmermann-Str. TB

9
9
9

369

Similarly, the original tokenizer treated basically all com-
mas (except for decimal commas), apostrophes, parenthe-
ses, quotes and blanks as separate tokens and token bound-
aries respectively, which posed problems for strings like
these:

(3) die
the
die TB

1,63-Meter-Frau
1.63-metre-woman
1,63-Meter-Frau

(4) Gibt’s
Are there
gibt TB ’s TB

wieder
again
wieder TB

Freikarten?
free tickets?
Freikarten?

(5) Veranstaltungsort
Event place
Veranstaltungsort TB

ist
is
ist TB

Stiegl’s
Stiegl’s
Stiegl’s TB

Brauerei.
brewery.
Brauerei TB .

(6) Karamanlis’
Karamanlis’s
Karamanlis’ TB

Politik
policy
Politik

(7) die
the
die TB

Kolleg(inn)en
(both male and female) colleagues
Kolleg(inn)en

(8) an
of
an TB

zivilem
civil
zivilem TB

(Verwaltungs-)Personal
(administration) personnel
(Verwaltungs-)Personal

(9) die
the
die TB

“Aldi”-Brüder
“Aldi” brothers
“Aldi”-Brüder

(10) das
the
das TB

“Soldaten sind Mörder”-Zitat
“soldiers are murderers” citation
“Soldaten sind Mörder”-Zitat

(11) rund
approximately
rund TB

300 000
300,000
300 000 TB

Quadratmeter
square metres
Quadratmeter

(12) in
into
in TB

eine
an
eine TB

angebliche
alleged
angebliche TB

ultima ratio-Situation
ultima ratio situation
ultima ratio-Situation

(13) ihre
their
ihre TB

New York-Reise
New York trip
New York-Reise

Consider examples (4), (5) and (6), which concern the treat-
ment of apostrophes. The apostrophe has a different func-
tion in each of them: In (4), it stands for the e of the con-
tracted pronoun es; as es would be a separate token, we
treat the sequence ’s as such as well. In (5), the apostrophe
is a common Anglicism in German, marking the genitive
of a proper name; unlike the English ’s, however, it is not
a clitic, but only marks morphological case; we thus treat
the sequence ’s as part of the preceding word in this case.
In (6), finally, the apostrophe marks the genitive of a proper
name that ends in s, x or z; again, we treat it as part of the
preceding word.

3.2. Text normalization

Another inadequacy of the original tokenizer was its insuf-
ficent ability to normalize text.

3.2.1. Decapitalization
The most important normalization when parsing free text
is decapitalization at the beginning of a sentence, but also

after opening quotes, brackets, colons and hyphens. The
original tokenizer’s inability to perform the latter caused
strings like the following to be normalized insufficiently by
the original tokenizer, i.e. Die in (14) and Siehe in (15)
were not lower-cased. In order to remedy this situation, de-
capitalization was extended to capital letters after opening
quotes, brackets, colons and hyphens.

(14) im
in the

Buch
book

“Mystik
“mystics
. . .

Mythos
myth
Mythos TB

Metaphysik
metaphysics
Metaphysik TB

–
–
– TB

Die
The
die TB

Spur
trace
Spur TB

des
of the
. . .

vermißten
missed

Gottes”
God”

(15) (Siehe
(See
(TB siehe TB

auch
also
auch TB

Wirtschaft)
economics)
Wirtschaft TB)

3.2.2. Normalization of variation in numbers
German exhibits considerable variation in the notation of
numbers: Both the comma and the point appear as digi-
tal separators, and large numbers expressed in digits occur
without any segmentation (cf. (16)), segmented by a point
(cf. (17)), a blank (cf. (18)) or even an apostrophe (cf.
(19)).

(16) Insgesamt
In total
insgesamt TB

130000
13,000
130000 TB

DM
DM
DM

(17) Die
The
die TB

rund
approximately
rund TB

18.400
18,400
18400 TB

Ladiner
Ladinians
Ladiner

(18) 35 000
35,000
35000 TB

Menschen
people
Menschen TB

protestierten
protested
protestierten

(19) 300’000
300,000
300000 TB

Anleger
investors
Anleger TB

wollen
want
wollen TB

Swisscom-Aktien
Swisscom shares
Swisscom-Aktien

Since applications that make use of the grammar do not
want to bother about this type of variation, we decided
to map all the segmented variants onto their unsegmented
counterpart and to use the comma as the “normal” digi-
tal separator. Moreover, all of these strings can thus later
be analyzed adequately by our FST morphology, whereas
most of the segmented variants could not.

3.2.3. Haplology
Our grammar is punctuation-sensitive, which means that
commas, hyphens, periods etc. are parsed just like words
and appear in the resulting trees. (See, e.g., figure 1.) In
general, it is not very difficult to handle punctuation in the
syntactic rules of the grammar, in particular in a language
like German, where punctuation is syntax-driven to a large
extent. However, there are some low-level typographical
conventions that complicate this picture: In German, as
in many other languages, certain punctuation marks that
would show up sentence-internally disappear when they
would be adjacent to another punctuation mark. In other
words, they are merged into the following punctuation mark
(haplology). This is the case of, e.g., hyphens and commas
before periods.

370

Figure 1: excerpt from the c-structure of (20a)

One possible solution to this problem would be to write dis-
tinct syntactic rules for constituents that are surrounded (or
preceded or followed) by commas or hyphens for each con-
text they can appear in. This solution would seriously hurt
the modularity and maintainability of the grammar, how-
ever, since it would necessitate a multitude of almost iden-
tical rules that only differ with respect to punctuation.
We thus prefer a different solution, which, at least in part,
was already implemented in the original tokenizer: Dur-
ing text normalization, additional optional commas are in-
serted before visible commas, periods, question marks and
exclamation marks. What needed to be revised with respect
to this insertion, were two things: First, other punctuation
marks, e.g. hyphens, have to be taken into account as well,
as they also take part in this type of interaction. Second, it
is desirable to distinguish commas that are actually present
in the surface string from the additional ones provided by
the tokenizer.

(20) (a) Sie
They
sie TB

werden
are
werden TB

enteignet
expropriated
enteignet TB

–
–
– TB

was
which
was TB

manche
some
manche TB

rundum
altogether
rundum TB

ablehnen
reject
ablehnen TB

–
–
– TB

und
and
und TB

werden
are
werden TB

nur
only
nur TB

unzureichend
insufficiently
unzureichend TB

entschädigt.
compensated.
entschädigt TB .

(b) Sie
They
sie TB

werden
are
werden TB

enteignet
expropriated
enteignet TB

–
–
– TB

was
which
was TB

manche
some
manche TB

rundum
altogether
rundum TB

ablehnen.
reject.
ablehnen TB , TB .

(20b) illustrates the insertion of a an additional optional

comma (,); (20a) is a sentence where no additional comma
needs to be inserted. This tokenizer output for both sen-
tences can be processed by the following rule and lexical
entries:

- HYPHEN * .
, COMMA * .
_, HAP-COMMA * .

NACHFELD --> HYPHEN
CPsentrel
{ HYPHEN
| HAP-COMMA
}.

The structures produced by this rule are illustrated in fig-
ures 1 and 2. Whereas in the former, the CPsentrel is
enclosed by HYPHENs on both sides, the latter is preceded
by a HYPHEN and followed by a HAP-COMMA. Note that
we do not allow sequences of HYPHEN, CPsentrel and
regular COMMA to be analyzed as NACHFELD.

CS 2: ROOT

CProot[std]

DP[std]

DPx[std]

PRON[std]

^ sie

Cbar

Vaux[pass,fin]

werden

VP[v,part]

VPx[v,part]

VC[v,part]

V[v,part]

Vx[v,part]

enteignet

NACHFELD

COMMA

,

CPsentrel

PRON[int]

was

VP[v,fin]

VPx[v,fin]

DP[std]

DPx[std]

D[std]

manche

VPx[v,fin]

VC[v,fin]

V[v,fin]

Vx[v,fin]

ablehnen

HAP-COMMA

_,

PERIOD

.

Figure 2: c-structure of (20b)

3.3. Interpreting quotes as potential “markup” for
foreign material

One major obstacle for full coverage of German newspa-
per texts is the common occurrence of material from for-
eign languages in the text. However, this material is often
“marked” by quotes for the human reader, and it seems wise
to take advantage of these quotes for parsing. One way this
can be done is the following: All strings between balanced
quotes are optionally considered as one single token and
marked as +QuotedString. (21) illustrates this solution.

(21) des
of the
des TB

zweiten
second
zweiten TB

Gegenkongresses
anti-congress
Gegenkongresses TB

“The other Economic Summit”
“The other Economic Summit”
The other Economic Summit TB +QuotedString

371

The output is then “collected” by the following rule and
lexical entries:

-unknown NE * (ˆPRED)=’%stem’.

+QuotedString QS_SFX * .

NAMEP --> NE
QS_SFX.

-unknown, as it is shown here, is a guessing mechanism
for any kind of token provided by the tokenizer; it allows
the grammar to treat The other Economic Summit (as well
as any other string) as an NE. This NE can then be com-
bined with a QS-SFX and form a NAMEP. The resulting
c-structure then looks as follows:

CS 1: DP[std]

DPx[std]

D[std]

des

NP

Aord[+infl]

zweiten

N[comm]

Gegenkongresses

LABELP

NAMEP

NE

The other Economic Summit

QS_SFX

+QuotedString

Figure 3: c-structure of (21)

4. Evaluation
For a comparative evaluation of the original and the new
tokenizer, we parsed sentences 8,001 through 10,000 of the
TiGer Corpus with grammar versions that only differed in
the version of the tokenizer being used. The changes ob-
tained with the new tokenizer were the following: Of the
2000 sentences, 301 vs. 423 sentences could not be parsed,
232 vs. 211 sentences timed out.3 In total, this represents a
gain of 101 sentences for which we get a full parse, which
is an increase of 5.1 points (or 7.5%) in coverage. Given
that full parses almost always result in a noticeably higher
F-score than partial parses (cf. Riezler et al. (2002), Rohrer
and Forst (2006)), we conjecture that the revision of the to-
kenizer contributes considerably to the overall parse quality
of our grammar.
For a more direct evaluation of the tokenizer, we randomly
selected 100 out of the 301 sentences that can still not be
parsed and determined whether parsing failure was due to
erroneous tokenization. For 88 of them, this is not the case.
Among the 12 that failed due to tokenization errors, 5 con-
tain foreign multi-word units, mostly names, that are not
marked in any way, as in example (22)4; 3 sentences con-
tain the upper-cased string FRANKFURT A. M., where the

3Both for uncovered sentences and for timeouts, XLE provides
a fallback mechanism that enables us to produce partial parses for
those sentences.

4We indicate the correct tokenization in the third line and the
actual tokenization in the fourth line.

A. is not lower-cased at the moment; 2 sentences have so-
called Aktenzeichen in them, which are identifiers of court
sentences etc. that consist of letters, digits and spaces (cf.
example (23)); finally, 2 sentences contain foreign mate-
rial between single quotes, which are not (yet) recognized
as markup, as in example (24). The problem of the multi-
words is difficult to address without having complete lists
of place, organization and product names available. The re-
maining problems will be addressed in future work on the
tokenizer.
(22) im

in the
im TB
im TB

Palazzo Reale
Palazzo Reale
Palazzo Reale
Palazzo TB Reale

(23) [...]
[...]
[...]
[...]

(AZ: 9 C 73.95).
(Aktenzeichen: 9 C 73.95).
(TB AZ TB : TB 9 C 73.95 TB) TB .
(TB AZ TB : TB 9 TB C TB 73.95 TB) TB .

(24) das
the
das TB
das TB

,faire de la philosophie’
‘faire de la philosophie’
faire de la philosophie TB +QuotedString
, TB faire TB de TB la TB philosophie TB ’

5. Conclusion
We have shown that precise preprocessing, in this case
tokenization and normalization, is important when hand-
crafted deep linguistic grammars are to be ported to free
text. Revising these components may thus prove just as
fruitful in terms of both coverage and parse quality as gram-
mar extension “stricto sensu”.

6. References
Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi Ma-

suichi, and Christian Rohrer. 2002. The Parallel Gram-
mar Project. In Proceedings of COLING-2002 Workshop
on Grammar Engineering and Evaluation, pages 1–7.

Stefanie Dipper. 2003. Implementing and Documenting
Large-scale Grammars – German LFG. Ph.D. thesis,
IMS, University of Stuttgart. Arbeitspapiere des Instituts
f ür Maschinelle Sprachverarbeitung (AIMS), Volume 9,
Number 1.

Ronald M. Kaplan, John T. Maxwell, Tracy H. King, and
Richard Crouch. 2004. Integrating Finite-state Tech-
nology with Deep LFG Grammars. In Proceedings of
the ESSLLI 2004 Workshop on Combining Shallow and
Deep Processing for NLP, Nancy, France.

Ronald M. Kaplan. 2005. A Method for Tokenizing Text.
In Festschrift in Honor of Kimmo Koskenniemi’s 60th an-
niversary. CSLI Publications.

Stefan Riezler, Tracy Holloway King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell III, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and Discriminative Esti-
mation Techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics 2002, Philadelphia.

Christian Rohrer and Martin Forst. 2006. Improving cover-
age and parsing quality of a large-scale LFG for German.
In Proceedings of the Language Resources and Evalua-
tion Conference (LREC-2006), Genoa, Italy.

372

